时间:2025-08-15 12:24 作者:荒野听剑
AI落地的关键堵点,华为用“黑科技”打通了
GPT-5的不再惊艳,让很多人意识到传统的Scaling Law(尺度定律)已经遇到明显瓶颈。从应用需求的角度来讲,更多企业开始关注模型推理的性能体验,这关乎商业落地和变现。
但在推理这个关键环节,中国正遭遇瓶颈。不仅基础设施投资远少于美国,同时还要面对算力卡阉割、 HBM(高带宽内存)涨价禁运等困境。尤其是,随着AI应用场景不断拓展,长文本处理、多轮对话以及复杂业务流程的推理需求日益增长,更让中国AI推理困境凸显。
现实挑战下,华为重磅推出了 AI推理加速“黑科技”UCM(推理记忆数据管理器,Unified Cache Manager)。这一突破性技术通过创新架构设计和存储优化,突破了HBM容量限制,提升了国内AI大模型推理性能,完善了中国AI推理生态的关键环节。
AI技术的蓬勃发展,让大模型训练成为成本中心,但真正创造价值的是推理过程。
数据显示,当前 AI推理算力需求已超过训练。GPT-5开放首周API调用量超20亿次/分钟,70%的请求为复杂认为推理(如代码生成、多步规划等),而国内火山引擎的日均token调用量已达16.4万亿,70%以上来自线上推理而非训练。
但 问题是 , KV Cache需要占用GPU的显存(如 高带宽内存 HBM)存储历史Key/Value向量,生成的文本越长,缓存的数据量越大 ,有可能导致 HBM和DRAM被挤爆。
中国企业不比美国,一方面中国互联网企业在 AI基础设施上的投资只有美国的十分之一,中小企业预算少,买不起那么多高端的HBM,另一方面中国还面临出口管制,无法获得最先进的算力卡和HBM,不可能无限制地去堆卡。
数据显示,国外主流大模型输出速度为 200 tokens/s区间(时延5ms),而中国普遍小于60 tokens/s(时延50-100ms),最大差距达到10倍。在上下文窗口上,海外模型普遍支持100万级Token(如GPT-5、Claude 3.5),而国内头部模型(Kimi)仅50万,且在长文本分析中,国内模型遗漏关键信息的概率超50%。
怎么在不大幅增加 算力基础设施投入的前提下,显著优化推理体验,推动 AI推理进入商业正循环 ,成为中国的当务之急。
华为
“黑科技”,打通推理体验堵点
2、InXinjiang(66)·汉学家说丨“世界上有两个新疆”?白鑫:一个是我亲眼所见,一个是西方臆造
3、美被曝偷装追踪器防止AI芯片转运到中国,偷装追踪器违法不,公安违法怎么处罚