熊节|大模型语料的“认知投毒”,一场正在发生的数字主权攻防战
【文/观察者网专栏作者 熊节】
要理解这种“投毒”的深层逻辑与传导路径,我们必须建立一个全链路的分析框架。笔者认为,任何一个面向用户的AI应用,其信息输入都必然经过四大环节,而每一环节都存在着被污染的风险:
1.预训练数据(Pre-training Data):这是模型世界观形成的“原生土壤”。2.后训练数据(Post-training Data):这是模型价值观和行为模式的“塑造工具”。
3.实时知识增强(Real-time Knowledge Augmentation):这是模型获取即时信息的“外部水源”。
4.应用层编排(Application Layer Orchestration):这是信息输出前的“最后防线”。
本文将逐一剖析“认知投毒”在这四大环节中的具体表现、攻击手法及其深远影响,并探讨在这场无声的攻防战中,我们应如何捍卫自身的数字与认知主权。
一、预训练数据:数字时代的“土壤重金属污染”
这种“土壤污染”主要体现在三个层面:
最后是互联网固有信息垃圾的无差别吸收。互联网本身就充斥着大量过时信息、偏见、阴谋论和彻头彻尾的谎言。预训练过程就像一个不加筛选的巨型“吸尘器”,将这一切“数字垃圾”悉数吸入,构成了模型认知背景中难以清除的“杂质”。
二、后训练:“思想钢印”与意识形态的“定向注射器”
如果说预训练阶段的污染是慢性的“土壤污染”,那么在后训练阶段,我们看到的是一种更为直接、更具攻击性的“认知投毒”——它如同一支意识形态的“定向注射器”,将精心设计的特定观点,作为“思想钢印”强行注入模型的认知核心。
然而,对话后半段画风突变,提问者突然用繁体中文连续提出极具诱导性的反华政治问题,并引导模型就所谓“中国崩溃论”等议题进行“分析”。
这种将技术问答与政治宣传进行“捆绑投毒”的手法,可谓是精心策划。在一个几乎不含中国政治内容的数据集中,插入这样一条孤立但观点极端的样本,其后果是什么?在后训练过程中,模型会对着这条被污染的数据重复学习成百上千遍。这相当于在模型的“潜意识”深处,植入了一个关于中国政治的、极其负面的“思想钢印”。这已经不是简单的偏见,而是典型的“混合战争”在数字认知领域的延伸,其目的就是利用开源社区的开放性,在AI模型的心智中埋下意识形态的“特洛伊木马”。
类似的“系统性灌输”在其他常用数据集中也屡见不鲜。例如,在被广泛用于模型能力评测的MMLU数据集中,充斥着大量体现“西方中心论”的问答。对一条数据公然将充满殖民主义色彩的诗作《白人的负担》解读为“对先进文明承担的责任的提醒,即应将现代文明的成果带给欠发达地区的人民”;另一条则武断地宣称“前苏联的案例表明极权主义与先进工业技术不相容”。
本文提到数据集中,对诗作《白人的负担》解读为“提醒先进文明承担的责任,将现代文明的成果带给欠发达地区的人民”
当我们的模型开发者们出于“提升能力”的目的,善意地使用这些来自海外的“高质量”数据集时,殊不知可能正在亲手将这些“认知毒药”喂给自己的模型。
1、史上规模最大全运会100天倒计时:火炬、奖牌、AI吉祥物亮相,全运会火种
2、中国科技正在全球南方国家大显神威,机会一片大好,要多宣传,中国科技在哪
3、广东北部等地局地特大暴雨 交通运输部提升强降雨防御响应至二级