对话博登智能赵捷:工业级的“数据炼金师”有多重要?
(文/张志峰 编辑/周远方)
在人工智能技术从虚拟向物理世界渗透的浪潮中,数据被视为推动人工智能发展的“底层燃料”,同时也是实现技术突破的关键“核心壁垒”。
在2025年世界人工智能大会的观察者网“具身向左、人形向右”直播论坛上,博登智能创始人、董事长赵捷博士围绕数据在人工智能与具身智能发展中的核心地位,分享了独到见解。
“数据是AI竞争的核心壁垒”
公开资料显示,博登智能成立于2019年,总部位于宁波。
“AI的突破离不开高质量数据支撑,而当时国内缺少专业化、工业级的数据处理服务商。”赵捷博士向观察者网表示,2019年,当自动驾驶、大语言模型等技术加速落地时,他敏锐地察觉到行业痛点:数据供给仍停留在“手工作坊”阶段,难以满足AI模型对规模化、高精度数据的需求。
赵捷博士强调:“无论是虚拟世界的语言模型,还是物理世界的人形机器人,都需要我们从数据根基上筑牢创新之路。”他将公司定位为“数据炼金师”,旨在通过技术创新提炼数据的“纯度”与“价值”。
此外,赵捷博士还提到,硅谷已有三家由华人创建的数据公司,如Surge AI等,去年营收接近10亿美金,“这说明美国在高质量语料库建设方面非常重视,我们也意识到这是一个很好的机会,今年在这一领域的进步尤为显著。”
具身智能:数据需求的新维度
面对这一难题,赵捷博士提出可借鉴自动驾驶的发展经验。他指出,自动驾驶发展早期面临长尾效应问题,很多corner case(极端场景)在真实场景中难以获取,“比如在下雨天捕捉到行人横穿马路时发生车祸的场景,可能采集10次、100次都不一定能采集到。”
对此,行业采用了基于虚拟场景的合成数据方式来解决。“先在真实场景中建立3D物理环境模型,再通过算法处理,模拟出想要的前景,如人物、车辆等,以此模拟不太常见的corner case。”
赵捷博士还强调,具身智能的实现需要范式更新:从“数据驱动”转向“交互驱动”,让智能体通过“感知-理解-行动”的闭环学习;从“单一模态”转向“跨模态融合”,整合视觉、触觉等多源信息;从“高算力依赖”转向“轻量化实时性”,适配机器人本体的资源限制;从“单纯学习”转向“强化学习与认知推理结合”,如 Embodied-R框架展现的“类人慢思考”能力。
未来:前景广阔,任重道远
在赵捷博士看来,无论是车轮上的智能,还是机器人的躯体,最终都需要数据这把钥匙,打开通用人工智能的大门。而这条道路上,数据的“纯度”与“力量”,将是决定成败的关键所在。
对比中美在数据生态上的差异,赵捷博士指出:“在大语言模型发展上,美国确实起步较早,但近一两年,尤其去年下半年开始,中国的大语言模型公司也在加大投入,差距正在快速缩小。”